

Year 7 Computing – **Spring 1** Computational thinking – Binary and Logic Gates

	Key term	Definition	
1	Binary	The data which a computer uses (Base 2)	
2	Denary	Our standard number system (Base 10)	
3	Logic gate	Special circuits built into computer chips	
4	Operator	Is symbol that carries out a particular function	
5	Boolean	A data type in computing which only has two possible values, true or false	
6	Truth Table	These show all possible input combinations	
7	NOT gate	Takes a single input and give a single output	
8	AND gate	Takes two inputs and gives one output	
9	OR gate	Takes two inputs and gives one output	
10	Logic circuit	Where multiple logic gates are combined	

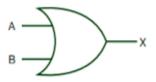
There are **three** main types of logic gates:

NOT Gate

INPUT A	OUTPUT X
0	1
1	0

INPUT A	INPUT B	OUTPUT X
0	0	0
0	1	0
1	0	0
1	1	1

0 to 15 in Binary


Conversion of numbers from 0 to 15 in the Binary system.

Decimal	Binary
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1101
13	1101
14	1110
15	1111

A <u>bit</u> (short for binary digit) is the smallest unit of data on a computer; each bit has a single value of either 1 or 0.

Computers use logic gates to carry out operations. Each logic gate represents a Boolean Operator – NOT, AND, and OR. A gate takes binary data and then outputs the result of the operation.

OR Gate

INPUT A	INPUT B	OUTPUT X
0	0	0
0	1	1
1	0	1
1	1	1